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Abstract

Modern fluid simulators have been able to reproduce the aesthet-
ics of many naturally occurring fluids. Much research [Monaghan
2005; Ihmsen et al. 2014a] has been dedicated to smoothed particle
hydrodynamics (SPH) for simulating fluids in computer graphics.
This paper compares some of the fundamental state-of-the-art SPH
techniques for simulating weakly compressible fluids. In partic-
ular, different methods to compute pressure, pressure forces, vis-
cosity and surface tension are compared for efficiency and visual
accuracy. In addition, various methods for handling boundary con-
ditions are analysed. All findings are demonstrated with a robust
SPH implementation, specifically designed for comparing various
SPH techniques.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modelling I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation;

Keywords: physically-based animation, fluid simulation,
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1 Introduction

Fluids have fascinated humanity for centuries. The beauty in na-
ture’s flow patterns has captivated our imagination even predating
any rigorous mathematical or scientific investigation of fluid flows
from the seventeenth century. The work of Leonardo da Vinci, for
instance, features the complexity and elegance of naturally occur-
ring fluid flows [Ball 2011]. Moreover, people interact with various
kinds of fluids on a daily basis, so it is only natural that fluid simu-
lation is an important part of computer graphics.
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Early fluid simulators can be categorized into particle-based and
grid-based methods. Purely particle-based methods store and com-
pute fluid quantities (density, viscosity, force, etc.) at discrete points
(called particles), which follow the motion of the fluid through time.
In contrast, purely grid-based methods generally compute the same
quantities at points fixed in space, and often aligned into a hex-
ahedral grid structure. There are advantages and disadvantages
to both methods, so both are currently employed to simulate flu-
ids in industry [Sid 2013], although neither in its pure form. For
instance, particle-based methods rely on efficient neighbourhood
search algorithms, which often utilize a regular grid. Grid-based
methods, on the other hand, handle advection poorly, and are often
augmented by marker particles to transport mass through the grid.

This work focuses on a particular particle-based method called
smoothed particle hydrodynamics (SPH), which approximates the
solutions of the equations of fluid dynamics by interpolating fluid
quantities at discrete particles using smoothing kernels. The origi-
nal kernel estimation technique was developed by statisticians to es-
timate probability density functions given a discrete set of random
variables (see [Rosenblatt 1956] and [Parzen 1962] for details). In
contrast, grid-based methods use finite difference schemes to inter-
polate quantities. There are a number of advantages SPH has over
other methods, as elegantly outlined in [Monaghan 2005]:

• Being a particle-based method, SPH treats advection exactly.
For instance, each particle carries a fixed mass, which follows
the particle through the velocity field exactly.

• Multi-phase flow is trivially accomplished with SPH, while
separate methods are needed to handle boundary conditions
between neighbouring phases [Losasso et al. 2006] for grid-
based methods.

• Naturally, particle methods like SPH approximate continuum
fluid equations on a more fundamental level where the parti-
cles approximate the underlying molecular system of the fluid.
This often allows SPH to handle complex physics easily. It
also makes SPH particularly robust against large discontinu-
ities (or shocks) in the underlying force fields.

• SPH can be extended to handle multiple resolutions depen-
dent on time and space, making it suitable for simulating large
bodies of fluid where lots of detail is needed on the surface,
but not necessarily in the interior. See [Chaniotis et al. 2002]
and [Feldman and Bonet 2007] for details on dynamic particle



refinement. Another multi-resolution method has been intro-
duced in [Solenthaler and Gross 2011] where two distinct but
coupled simulations evolve the SPH fluid on two different res-
olutions respectively.

• Computation happens only at particle locations, exactly where
the fluid is. In contrast, grid-based methods compute quanti-
ties at fixed locations, which result in various grid artifacts.
For instance, separated droplets of fluid may disappear in a
grid-based method if the droplet is smaller than a grid cell.

Unfortunately solving the Navier-Stokes equations for weakly com-
pressible or incompressible, free-surface fluids using SPH poses
some difficulties. For instance, in standard SPH, particles expe-
rience pressure forces from neighbouring particles due to density
fluctuations, thus in a body of fluid, surface particles may incor-
rectly experience lower pressures than their interior counterparts,
due to the absence of surrounding air particles. A number of
different approaches exist to resolve this issue including various
equations of state (EOS) [Morris and Monaghan 1997; Monaghan
1994; Desbrun and Gascuel 1996; Adams et al. 2007], iterative
EOS solvers including predictive corrective incompressible SPH
(PCISPH) [Solenthaler and Pajarola 2009] and local Poisson SPH
(LPSPH) [He et al. 2012]. There are methods, however, that it-
eratively solve the pressure Poisson equation (PPE) [Shao and Lo
2003], a technique common to grid-based methods. The current
state-of-the-art solution to incompressibility in SPH is implicit in-
compressible SPH (IISPH), developed in [Ihmsen et al. 2014b].

Strategies for computing viscosity, surface tension and boundary
forces also vary among different SPH implementations.

This paper discusses elements from a two key SPH implementa-
tions including

• [Müller et al. 2003], which first achieved interactive speeds
for fluid simulation based on the Navier-Stokes equations;

• [Becker and Teschner 2007], which combined existing SPH
ideas found in [Monaghan 2005], with a new surface tension
term to achieve convincing results for weakly compressible
SPH (WCSPH);

2 Related Work

Starting with Foster and Metaxas [1996; 1997], who introduced a
finite-difference scheme to solve the Navier-Stokes equations, grid-
based methods for fluid simulation have become increasingly popu-
lar in the computer graphics community. These methods use the Eu-
lerian viewpoint to describe the motion of fluid on a fixed grid, and
as a result, exhibit difficulties computing advection and conserva-
tion of mass and volume. Stam [1999] extended the grid-based ap-
proach to use semi-Lagrangian advection. Stam’s method suffered
from large numerical dissipation, which was alleviated by vorticity
confinement, introduced in [Fedkiw et al. 2001] beautifully simulat-
ing smoke effects. Later, Fedkiw and Foster [2001] extended these
ideas to incompressible fluids, and improved mass conservation, by
introducing the level set method [1988] augmented by marker par-
ticles for surface tracking. Further notable developments of grid-
based methods include improved boundary conditions [Rasmussen
et al. 2004], two-way obstacle coupling [Carlson et al. 2004; Guen-
delman et al. 2005; Robinson-Mosher et al. 2008], multiple fluid in-
teraction [Losasso et al. 2006] among others. Grid-based methods
have a long history, tracing back to the work of Harlow and Welch
[1962; 1965] who developed the particle-in-cell (PIC) and marker-
and-cell (MAC) methods for compressible and incompressible flow
respectively. The fluid-implicit-particle (FLIP) was later developed
in [Brackbill and Ruppel 1986] to correct PIC for its large numer-

ical dissipation. FLIP was later extended to handle incompressible
flow [Kothe and Brackbill 1992].

Smoothed particle hydrodynamics was introduced by [Gingold and
Monaghan 1977] and [Lucy 1977] independently. Since then, SPH
has been thoroughly developed for various applications including
fluid simulation.[Desbrun and Gascuel 1996] first introduced SPH
into the computer graphics community to model deformable bodies.
[Morris 2000] proposed a robust method for simulating surface ten-
sion which was later succeeded by [Akinci et al. 2013]. [Bonet and
Kulasegaram 2002] described the application of the Shepard filter
to SPH in order to improve density estimates near the boundaries;
this idea is used extensively in SPH simulations. Shortly there-
after, SPH became the first method to achieve interactive speeds for
fluid simulation using Navier-Stokes equations [Müller et al. 2003].
Since then SPH became a popular topic in computer graphics, and
many adjustments have been introduced to improve weakly com-
pressible and incompressible fluid simulation. For instance [So-
lenthaler and Pajarola 2008] proposed a correction for the multi-
phase behaviour of SPH fluids with largely density ratios. [Akinci
et al. 2012] and [Schechter and Bridson 2012] introduced signifi-
cant improvements to boundary handling. [Solenthaler and Gross
2011] uses coupled simulations to improve resolution in highly de-
tailed areas in an SPH fluid. Naturally various optimizations and
visualization methods [2003; 2011] have been introduced to aid in
SPH development. For a detailed introduction of SPH, see [Mon-
aghan 2005], and for state-of-the-art SPH developments in com-
puter graphics, see [Ihmsen et al. 2014a].

3 Smoothed Particle Hydrodynamics

The context in SPH consists of a set of particles (indexed by i), at
positions xi, with velocities vi, and masses mi. Each particle also
has an associated density ρi and pressure pi. For a fluid, the motion
of these particles are governed by the Navier-Stokes equations:

dv

dt
= −1

ρ
∇p+ ν∇2v + fother

∇ · v = 0

assuming constant viscosity ν. The first and second terms represent
accelerations due to pressure and viscosity respectively. fother en-
capsulates the force per unit area of extraneous forces including
surface tension, gravity and collisions.

Suppose we want to compute a quantity A (density, pressure,
forces, etc.) at a position x in the fluid. We can write A(x) as
an integral over the whole volume:

A(x) =

∫
V

A(r)δ(x− r)dr

where δ is the Dirac delta “function”. We may approximate this in-
tegral by choosing a smooth distribution W , also called a smooth-
ing kernel, to replace δ:

A(x) ≈
∫
V

A(r)W (x− r)dr. (1)

where W is normalized such that
∫
V
W = 1. Furthermore, we can

discretize (1) by noting that the right-hand side can be written as∫
V

A(r)

ρ(r)
W (x− r)ρ(r)dr,

where ρ(r)dr is a mass element. Thus we can discretize this equa-
tion by taking the sum over the particles in the volume, where the



mass is known:

A(x) ≈
∑
i

A(xi)

ρi
W (x− xi)mi. (2)

Finally, choosingW to have compact support (say radius h) greatly
reduces the number of terms in the sum. Thus we may compute the
density of a particle i as follows:

ρi =
∑
j

mjWij , (3)

where I use the notation Wij = W (xi − xj , h), so the size of
the kernel is implied. For a thorough investigation of the errors
involved in the described approximations, see [Monaghan 2005].

It is straight forward to compute spacial derivatives of SPH quanti-
ties:

∇Ai =
∑
j

mj
Aj
ρj
∇Wij , ∇2Ai =

∑
j

mj
Aj
ρj
∇2Wij

However, various approximations for spatial derivatives have been
proposed to improve their accuracy. For instance in order to sym-
metrize forces (that is to conserve momentum) [Monaghan 1992],
the gradient may be computed as follows:

∇Ai = ρi
∑
j

mj

(
Ai
ρ2
i

+
Aj
ρ2
j

)
∇Wij (4)

3.1 Smoothing Kernels

Many different smoothing kernels have been proposed in SPH liter-
ature. The most popular kernels are outlined in Appendix A, how-
ever the choice of kernel seldom has adverse effects.

3.2 Neighbourhood Search

The SPH interpolation sum (as in (2)) spans over particles within h
distance of the target position, since other particles will have zero
contribution to the sum. Searching for these nearby particles, can
be efficiently achieved with a regular axis aligned grid structure
containing cubic cells with side length h. Each cell in the grid
contains a list of particles that occupy that cell.

Suppose that grid cells are ordered along the axes and the grid con-
tains N cells (i.e. Nx marks the number of cells in the x direction).
Further suppose bmin marks the boundary corner of the grid with
the lowest co-ordinates. Then a particle at position xi is inside the
grid cell at index

idx(xi) = clampvec(
1
h

(x− bmin),0,N − 1),

where 0 = (0, 0, 0) and 1 = (1, 1, 1), and the clampvec function
is a coordinate-wise clamp:

clamp(a, b, c) := min(max(a, b), c).

This ensures that an infinite domain is covered by the grid where the
boundary cells are extended to infinity. This indexing is especially
useful when testing boundary conditions, because particles passing
through the boundary can be visually examined.

Now given a particle i, its neighbourhood particles can be found by
iterating through the particles of each of the 9 cells neighbouring
idx(xi). Note that other cells cannot contain any neighbours since
cell side length is h.

An important factor for performance in SPH implementations is
the number of loops through all the particles needed to complete
a time step. Each additional loop drastically hinders performance,
so researchers try to minimize loops in their models as much as
possible. Naturally, having multiple interacting fluids may suggest
the need to loop for each fluid, however storing an identifier at a
particle and determining which fluid it belongs to to gather physical
parameter is significantly faster.

For additional neighbourhood search optimizations, see [Ihmsen
et al. 2014a].

3.3 Incompressibility

As mentioned in the introduction, there are various methods to
handle incompressibility in SPH fluids. I implemented two non-
iterative EOS models, and I will describe in detail the method pro-
posed in [Ihmsen et al. 2014b], although no examples are present.

Pressure in the fluid can be directly related to density via the ideal
gas law equation: p = csρ, where cs is a compressibility constant,
which physically corresponds to the speed of sound through the
fluid. As suggested in [Desbrun and Gascuel 1996] and later used
in [Müller et al. 2003], this equation is replaced by

p = cs(ρ− ρ0) (5)

where ρ0 is the rest density of the fluid. This formation is better
suited for fluids, since particles will tend occupy a constant volume
and be generally more evenly distributed through the fluid. Müller
et al. [2003] used the following symmetrization of accelerations
due to pressure forces:

apres
i = −∇pi

ρi
= −

∑
j

mj
pi + pj
2ρiρj

∇Wij

Alternatively, Monaghan [1994] suggested using the Tait equation
(also used in [Becker and Teschner 2007]), particularly,

p =
ρ0cs
γ

((
ρ

ρ0

)γ
− 1

)
(6)

where γ = 7 is often chosen. This formulation is best suited for
weakly compressible fluids, where compression is penalized more
aggressively. Becker and Teschner [2007] demonstrated a compar-
ison of this EOS to (5), showing less compressibility when using
(6). They used the symmetrization for acceleration as in (4):

apres
i = −∇pi

ρi
= −

∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

+ Πij

)
∇Wij (7)

where Πij is a symmetric damping term discussed in Section 3.4
below.

In both cases, negative pressures must be clamped to 0. Negative
pressures may be interpreted as surface tension, however the result-
ing attraction forces are rather exaggerated and can lead to large
oscillations if ignored. Both equations of state above are imple-
mented as described.

3.4 Viscosity

A canonical artificial viscosity, originally introduced in [Monaghan
and Gingold 1983], is still widely used in fluid SPH simulations
[Becker and Teschner 2007; Becker et al. 2009; Akinci et al. 2012].



In particular, equation (7) is damped by a viscous term Πij , given
by when

Πij =

 −ν
(

vij ·xij

|xij |2+0.01h2

)
vij · xij < 0

0 otherwise

where xij = xi − xj , vij = vi − vj , and the viscous term

ν =
2αhcs
ρi + ρj

.

Here α is the user controlled viscosity parameter.

Another popular viscosity is given in [Müller et al. 2003]:

avisc
i = ν

∑
j

mj
vj − vi
ρiρj

∇2Wij (8)

Both viscosities above are implemented as described.

3.5 Surface Tension

Surface tension effects are difficult to achieve in SPH fluids. This
is because many models (e.g. [Morris 2000; Müller et al. 2003])
rely on curvature of the fluid surface, but computing curvature on a
body of particles with no well defined surface is non-trivial.

Some SPH surface tension models like [Morris 2000; Müller et al.
2003] are derived from the continuum surface force method [Brack-
bill et al. 1992]. Here the surface tension minimizes surface area of
the fluid. In particular, the force per unit area on a particle is given
by

f surf = σκn̂, (9)

where κ is the curvature, n̂ is the normal to the surface, and σ is the
user controlled surface tension coefficient. In order to compute the
curvature, we must first define a discrete field c over the particles,
called the colour field in SPH literature. As proposed in [Müller
et al. 2003], for a single fluid, we may define c to be 1 at particle
positions and 0 everywhere else. Then the normal can be written as

n̂ =
∇c
|∇c| .

The idea is that the colour field changes rapidly at the interface.
Thus curvature can be computed as

κ = −∇ · n̂

Additionally [Müller et al. 2003] proposes to multiply (9) by |∇c|
to ensure that tension is computed at the interface only. In addition,
they suggest evaluating (9) when |∇c| is large enough as to not
cause any stability problems. Thus the force per unit mass is can be
written as

asurf = −σ
ρ
∇2c n̂

This equation can be discretized as usual.

One problem with the above model is that computing∇2c is rather
error prone, especially for low surface tensions, where particles
may be scattered.

Following the work of [Tartakovsky and Meakin 2005], Becker and
Teschner [2007] use a position based attractive force to model sur-
face tension:

asurf
i = − σ

mi

∑
j

mj(xi − xj)Wij (10)

This formulation is especially simple and gives visually convincing
results.

Other models have been developed [Morris 2000; Hu and Adams
2006], however they focus on multi-phase flow and give poor re-
sults when applied to free-surface flows (see Figure 2 or [Becker
and Teschner 2007] for comparison).

Figure 2: A cube was evolved with high viscosity and surface ten-
sion similar to the test in Becker and Teschner [2007]. Note that
the additive blending reveals low density areas near the surface in
the right image (evolved state).

3.6 Multi-phase Fluids

As mentioned in the introduction, SPH is naturally suited for multi-
phase fluid flow. However, there are some issues with the standard
SPH formulations, when it comes to fluid-fluid coupling with large
density ratios. [Solenthaler and Pajarola 2008] has addressed this
issue. In particular, the standard SPH computation of density given
in equation (3) coupled with a typical EOS, causes large repulsion
forces between neighbouring fluids with a large density ratio. If,
however, the mass of the current particle was used to compute the
density, this problem can be avoided. This is because on the bound-
ary between two fluids, each fluid feels pressure as if it was due
to its own particles. Thus, we compute ρi = mi

∑
jWij instead

of (3). This idea is extended to other SPH quantities in [Solenthaler
and Pajarola 2008], and demonstrated multi-phase fluids using the
models of [Müller et al. 2003] and [Monaghan 1992]. These ideas
are used in my implementation for multi-phase flow including pres-
sure, viscosity and surface tension forces for the model of [Müller
et al. 2003]. In order to model tension at the free surface I used the
model in (10) instead of [Morris 2000] as otherwise suggested in
[Solenthaler and Pajarola 2008]. Furthermore, my implementation
of [Becker and Teschner 2007] uses a pressure force per unit mass
given by

apres
i = −

∑
j

(V 2
i pi + V 2

j pj +mjΠij)∇Wij

where Vi = mi
ρi

is the volume. The artificial viscosity term left
unchanged. Finally, surface tension is computed only between par-
ticles of the same phase.

3.7 Boundary Conditions

A variety of boundary conditions have been used in SPH. I will
describe two particular strategies and make a note on the boundary
model used in [Müller et al. 2003].

3.7.1 Impulse Response Boundaries

Müller et al. [2003] used impulse based boundary collisions. When
a boundary-particle collision is detected, the velocity of the particle



Figure 3: A fluid with density 1000 kg/m2 (blue) flows underneath
a lighter fluid with density 900 kg/m2 (red).

is reflected along the normal at the boundary. In my implemen-
tation of [Müller et al. 2003], to simulate inelastic collisions with
the boundary, the reflected speed was reduced to 10% of the speed
before collision. To prevent particles from penetrating the bound-
ary, if the particle passes the boundary during a simulation step, its
position is projected to the boundary. To avoid sticking effects the
particle is also pushed a distance of 0.001 away from the boundary
in the direction of the normal.

3.7.2 Penalty Force Boundaries

Monaghan et al. [2004] noted that boundary force opposes the pres-
sure gradient of the fluid, hence it is natural to use the gradient of
the smoothing kernel to model boundary forces. In particular, the
force per unit mass on fluid particle i due to boundary particle k is
given by

fik =
mk

mi +mk
Γ(y)χ(x)nk,

where nk is the unit normal to the boundary at particle k, y is the
normal distance of the fluid particle to the boundary particle, that is
y = xik · nk, and x is the tangential distance x =

√
|xik|2 − y2.

Thus the total boundary force per unit mass on a fluid particle i is

abdry
i =

∑
k

fik. (11)

With boundary particle spacing ∆, the factor χ(x), written as

χ(x) =


(
1− x

∆

)
0 ≤ x < ∆

0 otherwise,

ensures that a particle moving parallel to the boundary feels the
same force regardless of where it is between two boundary par-
ticles. Note that χ(x) is designed for 1D boundaries (2D SPH),
a more sophisticated heuristic is needed for 2D boundaries. Γ(y)
takes the form of the kernel1 gradient, but taking a constant value
between its two local extrema:

Γ(y) = β



1
3

0 ≤ q < 1
3

2q − 3q2 1
3
≤ q < 1

2

(1− q)2 1
2
≤ q < 1

0 otherwise

1The kernel is assumed to take the form of a cubic spline, see Ap-
pendix A for an explicit formula.

where q = y/h, and β = 0.04c2s/y is chosen to estimate the max-
imum force per unit mass required to stop a particle moving at the
estimated maximum speed. The factor 1/y ensures that a faster
moving particle will also be stopped. [Monaghan et al. 2004] also
observed that their choice of the boundary force made little differ-
ence in the final results.

A major flaw in this formulation is that the extra 1/y factor dom-
inates fak as soon as the fluid particle comes to within half of the
kernel radius of the boundary particle, where the penalty forces can
be arbitrarily large. This greatly restricts time step size, and oth-
erwise causes large spontaneous collision responses. This method
models only free-slip conditions, additional tangential forces are
required to model different slip conditions.

Becker and Teschner [2007] used very similar boundary conditions,
however instead of using static boundary particles, they mirrored
fluid particles on the boundary such that x is always zero, and thus
avoiding a χ type correction in a 3D setting. A precise derivation
for β isn’t provided in SPH literature, so I provide a sample deriva-
tion on a simplified model in Appendix B for completeness.

3.7.3 Boundary Particles

Akinci et al. [2012] proposed a method for rigid-fluid coupling in
SPH fluids. This method leverages the ideas of [Solenthaler and Pa-
jarola 2008] for multi-phase flow mentioned in Section 3.6. Bound-
ary particles are treated like fluid particles, which inherit their ve-
locities from the rigid objects they represent. In particular, the total
force per unit mass on a fluid particle i due to a boundary particle
k is given by

abdry
ik = −Vkρ0

(
pi
ρ2
i

)
∇Wik︸ ︷︷ ︸

pressure acceleration

−Vkρ0Π̃ik∇Wik︸ ︷︷ ︸
viscosity acceleration

where Π̃ij is the same as Πij from before, but with a new viscous
factor given by

ν =
αhcs
2ρi

.

Thus the total acceleration due to boundary forces is

abdry
i =

∑
k

abdry
ik .

This method has been implemented to replace the penalty forces
proposed by [Becker and Teschner 2007], and demonstrated sig-
nificant improvements. In figure 5, penalty forces cause the fluid
to bend away from the enclosing box boundary right-hand image,
which does not occur with particle based boundaries. A closer com-
parison is shown in Figure 4

4 Time Integration

A standard leap-frog time integration scheme was used as described
in [Desbrun and Gascuel 1996]. No other time integration schemes
were tested or implemented.

5 Implementation and Visualization

An OpenGL interface was developed in C++11 with the help of Qt
5.2 [Dig 2013] in order to visualize the SPH particles. Various addi-
tional C++ libraries were used including Libconfig [Lib 2013],
Boost [Boo 2013], Assimp [Ass 2013] and Eigen [Eig 2013].
In addition, the program generates output containing information
about positions and velocities of an SPH fluid scene for each frame.



Figure 4: Penalty forces push the splash into the middle (left im-
age), while boundary particles maintain a more natural shape of
the splash (right image).

This output has the same format as the input for a particle skinner
implementation from [Bhattacharya et al. 2011]. Thus, one may
couple the two programs to generate triangular surfaces ready for
rendering.

My implementation uses the libraries Assimp and Libconfig
to let the user dynamically load geometry files describing the scene
and dynamics to be used.

Figure 5: A path traced image of a liquid ball splashing inside
a cube box. This image is the result of my implementation of the
model proposed by Becker and Teschner [2007]. Rendering was
accomplished with Blender.

6 Results and Conclusions

The focus of this project was to explore and learn about strengths
and weaknesses of SPH used in fluid simulation. As a result, little
attention was directed towards generating visually appealing im-
agery using one particular method. Instead, many methods were
explored.

I have successfully implemented two SPH formulations presented
in [Müller et al. 2003] and [Becker and Teschner 2007], although I
could not establish a working version of an iterative pressure pro-
jection solver, such as the one found in [Ihmsen et al. 2014b]. In
addition, I was able to simulate various boundary conditions and
multi-phase fluid interactions. Currently, the code used to handle
multi-phase interactions is able to simulate fluids implemented with
drastically different methods, for instance a fluid governed by equa-

tions from [Müller et al. 2003] may interact with a fluid governed by
the equations from [Becker and Teschner 2007]. This functionality
is useful because different models are preferred for different types
of fluid: EOS type models handle compressible fluids better, while
PPE methods are better at simulating incompressibility. I have not
rigorously tested this feature.

All simulations were done on a 2011 MacBook Air equipped with
a 1.8 GHz Intel Core i7 CPU, 4GB of RAM and Intel HD Graphics
3000 (384 MB). The simulations shown in the video are read from
cached files.

A particularly interesting drawback of both implemented models is
that with a large amount of fluid, the surface of the fluid oscillates
when at rest. This is possibly the result of poor viscosity models
used, but most likely simply an EOS solver artifact.

Figures 1 and 3 demonstrate multiphase fluid interaction. In Fig-
ure 1 the orange shape has a lower density, and floats relative to the
blue (higher density) fluid. Both figures show fluids governed by
equations from [Becker and Teschner 2007].

The supported video contains a series of scenes (simulations). The
first two simulations demonstrate two [Müller et al. 2003] fluids
with varying densities. The second, has a higher compressibility
constant and gives better results with less compression. The fol-
lowing two clips also demonstrate multi-phase flow using both im-
plemented models. The next clip shows the surface test as in Fig-
ure 2, and the following clip demonstrates surface tension in a fluid
subject to gravity. The final clip shows two breaking dams of differ-
ent density fluids. Note the colour coded information given on the
screen, it gives more precise information about each fluid on screen
when being simulated. Also note that the video shows precom-
puted simulations, actual simulations may take up to 20 seconds
per frame.

7 Future Work

Firstly, as hinted before, I would like to demonstrate a practical use
of multi-phase interactions between different SPH models, where
perhaps a gas-liquid coupling is effectively achieved. Furthermore,
it would be particularly interesting to see how IISPH works with
various viscosity, surface tension and multi-phase interaction mod-
els.
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MÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics Symposium on



Computer Animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, SCA ’03, 154–159.

OSHER, S., AND SETHIAN, J. A. 1988. Fronts propagating
with curvature-dependent speed: algorithms based on hamilton-
jacobi formulations. Journal of computational physics 79, 1,
12–49.

PARZEN, E. 1962. On estimation of a probability density function
and mode. Annals of mathematical statistics 33, 3, 1065–1076.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO, S.,
SUMNER, N., GEIGER, W., HOON, S., AND FEDKIW, R. 2004.
Directable photorealistic liquids. In Proceedings of the 2004
ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation, Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, SCA ’04, 193–202.

ROBINSON-MOSHER, A., SHINAR, T., GRETARSSON, J., SU, J.,
AND FEDKIW, R. 2008. Two-way coupling of fluids to rigid and
deformable solids and shells. In ACM SIGGRAPH 2008 Papers,
ACM, New York, NY, USA, SIGGRAPH ’08, 46:1–46:9.

ROSENBLATT, M. 1956. Remarks on some nonparametric esti-
mates of a density function. The Annals of Mathematical Statis-
tics 27, 3, 832–837.

SCHECHTER, H., AND BRIDSON, R. 2012. Ghost sph for ani-
mating water. ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2012) 31, 4.

SHAO, S., AND LO, E. Y. 2003. Incompressible {SPH} method
for simulating newtonian and non-newtonian flows with a free
surface. Advances in Water Resources 26, 7, 787 – 800.

SIDE EFFECTS INC. 2013. Houdini 3D Animation Tool.

SOLENTHALER, B., AND GROSS, M. 2011. Two-scale particle
simulation. In ACM SIGGRAPH 2011 Papers, ACM, New York,
NY, USA, SIGGRAPH ’11, 81:1–81:8.

SOLENTHALER, B., AND PAJAROLA, R. 2008. Density con-
trast sph interfaces. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
SCA ’08, 211–218.

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-
corrective incompressible sph. In ACM SIGGRAPH 2009 Pa-
pers, ACM, New York, NY, USA, SIGGRAPH ’09, 40:1–40:6.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 121–128.

TARTAKOVSKY, A., AND MEAKIN, P. 2005. Modeling of surface
tension and contact angles with smoothed particle hydrodynam-
ics. Phys. Rev. E 72 (Aug), 026301.

A Smoothing Kernels

The following smoothing kernels were used in the examples pre-
sented. Note that q = |x|/h. The main kernel used throughout
literature as described in [Monaghan 2005] is the cubic spline ker-
nel, given with its derivatives:

Wspline(x, h) :=
16

πh3


3q3 − 3q2 + 1

2
0 ≤ q < 1

2

(1− q)3 1
2
≤ q < 1

0 q ≥ 1

∇Wspline(x, h) :=
48

πh5
x


(3q − 2) 0 ≤ q < 1

2

− (1−q)2
q

1
2
≤ q < 1

0 q ≥ 1

∇2Wspline(x, h) :=
96

πh5


3(2q − 1) 0 ≤ q < 1

2

(2q − 1) (1−q)
q

1
2
≤ q < 1

0 q ≥ 1

Müller et al. [2003] proposed alternative kernels to improve perfor-
mance and correct some side effects seen in standard SPH simula-
tions. The following is a general purpose smoothing kernel used to
replace the cubic spline above for performance reasons (no square
root computations needed):

Wpoly6(x, h) :=
315

64πh3

 (1− q2)3 0 ≤ q < 1

0 q ≥ 1

∇Wpoly6(x, h) :=
945

32πh5
x

 −(1− q2)2 0 ≤ q < 1

0 q ≥ 1

∇2Wpoly6(x, h) :=
945

32πh5

 (1− q2)(7q2 − 3) 0 ≤ q < 1

0 q ≥ 1

The following kernel was used in [Müller et al. 2003] for pressure
force computations, to prevent clusters forming at high pressures:

Wspiky(x, h) :=
15

πh3

 (1− q)3 0 ≤ q < 1

0 q ≥ 1

∇Wspiky(x, h) :=
45

πh5
x

 −
(1−q)2
q

0 < q < 1

0 q ≥ 1

∇2Wspiky(x, h) :=
90

πh5
x

 (1− q)(2− 1
q
) 0 < q < 1

0 q ≥ 1

Mind the singularity at x = 0 in∇Wspiky and∇2Wspiky .

B Penalty-Force Boundary Conditions

Here I derive the penalty force function found similar to [Becker
and Teschner 2007]. Suppose the fluid has an initial velocity
v0 and is subject to gravitational acceleration g. Further assume
that the fluid is bound in an axis aligned box with dimensions
d = (dx, dy, dz). Then from conservation of energy, we can es-
timate the maximum speed of a fluid particle to be

vf =
√

2gdy + |v0|2.



Assume that boundary particles are arbitrarily more massive com-
pared to fluid particles, and fluid particles interact with a single
boundary particle inserted during collision resolution. Then the
penalty force per unit mass on each fluid particle is modelled by

dva
dt

= Γ(y)n

where n is the normal of the collision boundary. Then the work
required to stop a particle moving at the maximum estimated speed
is given by ∫ h

0

dva
dt
· ndy =

1

2
v2
f .

Solving this for β yields

β =
27v2

f

11h
.

Adding the extra 1/y factor can ensure that boundaries are never
penetrated given small enough time steps, however other measures
are possible, such as clamping particle positions to the boundaries
insuring non-penetration.


